CMS Reverse Engineering

AD-A243 438
A &

Encore/Model Integration

Contract # N00014-91-C-0240 SD T l C

FLECTE
Office of Naval Research DEC7 199
Arlington Virginia 22217-5000

Data Item A001
Bi-Monthly Progress Report

Reporting Period
September 1, 1991 - October 31, 1992

General Electric Company
Corporate Research and Development
P.O.Box 8
Schenectady, New York 12301

o s 81 1104 939
L IIII/HII/II/’I/’ II

DISTRIBUTION

Mr. James G. Smith

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000
Attn. JGS, Code 1211

Ref: N00014-91-C-0240
(Scientific Officer)

DCMAOQ Hartford

130 Darling Street

East Hartford, CT 06108-3234
(Administrative Contracting Officer)

Director, Naval Research Laboratory
ATTN: Code 2627
Washington DC 20375

Defense Technical Information Center
Building 5, Cameron Station
Alexandria VA 22304-6145
(2-copies)

Mr. Ali Farsi

Code G042

Naval Surface Warefare Center
10901 New Hampshire Avenue
Silver Spring, MD 20903-5000

Statement A per telecon

James Smith
ONR/Code 1267

Arlington, VA 22217-5000

NWW 12/5/91

Mr. Lambert C. McCullough
Department of the Navy

Office of the Chief of Naval Research
Arlington, VA 22217-5000
(Contracting Officer)

Ms. Tamra Moore

Code U033

Naval Surface Warefare Center
10901 New Hampshire Avenue
Silver Spring, MD 20903-5000

Mr. Phillip Q. Hwang

Code U033

Naval Surface Warefare Center
10901 New Hampshire Avenue
Silver Spring, MD 20903-5000

Lt. Barry Stevens

Code 6113

Department of the Navy

Fleet Combat Direction Systems
Support Activity, Dam Neck
Virginia Beach, VA 23461-5300

. Acessuioam For |
D NTIZ GRaal —

L WPEC Tl 0
| Unevnincrwieed 03
! Justifioation

|

,‘ By -
|_Distridetien/

-\

|

Availabllivy Cor
T TAvatl end/or
‘Dist ‘ Special

- ———

. c oo

TO: Distribution
FROM: Margaret Kelliher
DATE: October 31, 1991
SUBJECT Bi-Monthly Status Report - Contract # N00014-91-C-0240

1. Task 1: Language Processing and Analysis

In order to assure the quality and validity of the CMS-2 grammar being used to extract informa-
tion for Reverse Engineering, an effort has been made to collect 2 number of “typical” source
code examples. Currently, we are in possession of the following CMS-2 and CMS-2Y code.
(CMS-2Y is a dialect which is compatible with “standard” CMS-2.)

A total of 94 files (52,000 lines of source code) has been received from NSWC which constitutes
unclassified portions of a Mark 116 Mod 7 Mission Support Computer Program.

Three source modules have been received from Feet Combat Direction Systems, Dam Neck, as
follows:

Module - 1 consisting of two files containing 5,600 lines of CMS-2Y source code. This module is
a portion of the common system module in an FFG 7 class operational program which maintains
an intercomputer interface.

Module - 2 consisting of six files containing 17,500 lines of CMS-2 source code. This module is
described as being a WSN-5 inertial navigation simulation program.

Module - 3 consisting of twenty three files containing 3,000 lines of CMS-2Y source code. This
module is described as being a portion of the training function of the CG/DDG ADCS Block 0
program.

We have successfully tested our parser against (minimally edited) examples from each of these
systems. We are currently working on the design for COMPOOL handling. We do not currently
support the following constructs:

CSWITCH - conditional compilation directives

MEANS and EXCHANGE - macro substitution directives

COMPOOL - Task 1 is currently addressing Compool processing

No effort will be made to deal with CSWITCH, MEANS and EXCHANGE directives. As a
result, we anticipate that some editing of the input files will remain necessary.

2. Task 2: Data Extraction & Interface To Teamwork/SD

An initial demonstration system is currently operational which produces a CADRE Teamwork/
SD structure chart from CMS source code. This demonstrates the capabilities of passes 3 and 4.

The portions of the reverse engineering software completed to date have been used to produce the
necessary data for the CADRE cdif files which were then processed with CADRE’s C-REV and
Teamwork/SD to produce our first examples of working structure charts. A copy of a structure
chart produced from an NSWC file is included with this report .

We have completed about 2/3 of the Pass 3 design, and roughly 1/2 of the implementation. Pass4
exists in its entirety. We have drafted a design document to show how we’re proceeding, which I
am also including in this status report.

The tasks remaining to be completed in Pass3 are the production of Module Specifications and
Data Dictionary Entries in Teamwork/SD, and the generation of compool and include file hierar-
chies. Also remaining is the choice of software to be used for the acceptance test; the selection is
to be done by mutual agreement between NSWC and GE.

3. Task 3: ENCORE/MODEL Integration Study

On August 29th a meeting was held at CRD with Noah Prywes of Computer Command and Con-
trol Company. Two possible avenues for the integration of Model and ENCORE were identified:
integration with Elementary Statement Language (ESL), or
with the Entity-Relationship database.

We requested information from 4C regarding their internal data structures, so that a decision can
be made as to which avenue is preferable. We have received some of that information, but only
regarding the ESL possibility. We need to see information about the Entity-Relationship graph
before we can analyze the possibilities and make a decision.

October 31, 1991 2

GENERAL ELECTRIC COMPANY
CORPORATE RESEARCH & DEVELOPMENT
P.O. BOX 8 (BLDG KW, ROOM C247)
SCHENECTADY, NEW YORK 12301

FINANCIAL STATUS REPORT

PROJECT TITLE: CMS-2 REVERSE ENGINEERING AND ENCOREMODEL INTEGRATION

CONTRACT NO: N00014-91-C-0240

PERIOD OF PERFORMANCE: 08/01/91 THROUGH 04/29/92

CONTRACT VALUE: $126 FUNDS AUTH: $100

FOR PERIOD ENDING 10/29/91

C. TOTAL EXPENDITURES

Current Period (08/01/91 - 10/27/91) $45.
Cumulative Total to Date $45.
COMMENTS:

Dollars in thousands

G.D. COVLE 10/31/91

e MSMGSR;le

Fils Whole_SC View DOraw Annotate Print AutaGraph Browss DPI

RET

s Rm St 3 tewd COY

i] Rights Reserved.
473/sys/config_file’

a Function with no ¢

fllis a Function with no

a Function with no cff

CMS2 Reverse Engineering

Pass 3 Design Document

Margaret Kelliher

1.0 This Document

This document contains the high-level and low-level designs for the pass 3 phase of the
CMS reverse engineering tool. It is intended both as a working document and as a starting
place for future reverse engineering tools which may want to reuse parts of our approach.

2.0 High Level Design

The purpose of pass 3 is to read in CMS-2 source, extract information from it, and write
the information out to the middle files. The overall view of pass 3 consists of a main rou-
tine which handles the command line interface and drives the parser and the node process-
ing. Node processing consists of a high-level driver which sorts out the nodes that come
in, mid-level routines which further sort the nodes, and low-level routines which will do
the actual processing of the nodes, ie the writing out of the middle files.

2.1 Command Line Interface
We are deriving much of our user interface from JRET’s pass 3. We have not decided
exactly which options we will support, but at the very least, we will include the following:

* -P filename: specifies that the following argument is a filename containing a directory
search path

 -Ffilename : specifies that the following argument is a filename containing a list of files
to process before any other input files

o -c: produces middle files for compool modules; default is just system modules

¢ -csci csci_name: indicates that the name specified is to be used as the default CSCI
name

2.2 Parsing Strategy

We are reusing the parser from the CMS-2 translator. We will parse the COMPOOL files
separately, before the main file which references them.

CMS2 Reverse Engineering October 22, 1991 1

2.3 Processing Strategy

Our basic strategy is to divide the CMS-2 nodes into 6 basic categories, each of which will
be processed in a separate package. The top-level routine will determine the category to
which a node belongs, and will send it to the corresponding mid-level routine. These mid-
level routines are responsible for determining whether the node is to be processed,
ignored, or bypassed. If it is to be processed, a low-level routine is triggered which does
the node-specific processing required.

The 6 basic categories are as follows:

e structural statements: generally only needed in order to access the more interesting
types of statements to which they point.

 options: generally uninteresting, except in the way they affect our interpretation of
other statements.

e subprogram declarations: contain the subprogram name, formal parameters, the loca-
tion of its declaration, and access to its executable statements.

¢ data declarations: if global, we are interested in the declaration’s location, type infor-
mation, and any structures the declaration may contain. We also note any references to
other global data and types.

¢ executable statements: examined for references to global data items and calls to sub-
programs.

* substatement clauses are clauses which occur only within a statement and are not
themselves statements. The upper- and mid-level routines should never encounter these
types of nodes, and they will be processed, as appropriate, inside the low-level routines.

For a complete breakdown of the nodes, see Appendix A.

2.4 Basic Data Structure

Our data structure is the ADL parse tree which is used in the CMS2-to-Ada translator.

3.0 Low-Level Design

3.1 Packaging Summary
The major packages will be as follows: (italics indicate a generic package)

(* indicates almost complete reuse; # indicates significant reuse):

* Main * (contains main driver, handling command-line interface and file control)
e Parsing *

* Lexical Analysis *

Pass 3 Design Document October 22, 1991 2

e Parse_Control * (helper package which deals with parser and classification routines)
¢ Classification (high-level node-processing routines; basically sorts them out)

¢ Structure_Processing (mid- and low-level routines)

» Option_Processing (mid- and low-level routines)

e Subprogram_Processing # (mid- and low-level routines)

e Data_Decl_Processing # (mid- and low-level routines)

¢ Executable_Processing # (mid- and low-level routines)

e Print_Middle_File # (language-independent printing routines; mainly utilities)

» Source_file_database * (associates nodes with file names and line numbers)

e Scoping * (keeps track of which data items are global)

o Subprogram_Lists # (data package for communication between Subprogram_Process-
ing and Executable_Processing)

e System_Info (data package indicating what the current options are and what structure is
being processed; set from Options_processing and Structure_Processing; get from
other Processing packages; possibly to include command-line options too? or should
these just be passed along as flags?)

¢ Symbol tables and symbol table management * (several related packages)
e CMS_records * (data structure)

e CMS_interface * (access routines for cms_records)

e Copy_File_Handling # (to produce copy-file hierarchy)

» Compool_Reporting # (to produce the compool hierarchy)

Pass 3 Design Documnent October 22, 1991 3

Main

>

I relatively language-independent

FIGURE 1. Withing Relationships between Packages

] =1anguage-dependent

Parse_Control
Classify
Structure_P Option P | [Executable_P | [Data_Decl P ||| Subpgm_P
System_Info Subpgm_Lists Scoping Sourcefile DB | | Print_Middle
y
Parser/Lexical
CMS_Records Symbol Table
CMS_Interface

Pass 3 Design Document

October 22, 1991

3.2 Details of Packages

3.2.1 Main Package

The Main package will contain the Main routine. The main routine will decipher the com-
mand-line parameters and control the main loop which calls the parser and the node pro-
cessor once for each file specified. Most of this code can be reused from JRET.

Questions:
1. Which command-line flags do we want in the full system? All of them?

2. Which flags do we want ready for the demo (early November)?
As few as possible as long as we can still run; probably none.

3. Which package is responsible for copy file hierarchies?

In JRET, copy_file_handling, whose routines are called by the lexical analyzer.
(Shouldn’t be necessary for November)

4. Which package is responsible for compool hierarchies?

In Jovial, extract_info. I guess we’ll make some new packages to handle it. Will we
have enough info (without compool nodes)? (Shouldn’t be necessary by November)

It looks like we will have compool nodes after all...

5. Will the main procedure be responsible for sending information to the Sourcefile_Data-
base?

In Jovial, the main procedure calls a subprogram in Sourcefile_Database, with the name
of the next file to be processed. This same filename is then passed to the new initializa-
tion routine of the parser. We intend to do likewise.

It is possible that this will be changed so that all calls come from the parser. This would
make things cleaner. It is being investigated, but is low-priority...

The Procedure Main will be reused directly from JRET. It will call the parse_and_process
routine in the parse_control package, which will call the parser and the Process_a_Node
routine in the classify package with th-. topmost node of the parse tree.

3.2.2 Parser Package

The Parser package will contain the parser. This is being reused from the CMS-2 to Ada
translator. There is still some work to be done regarding compools, cswitches and macros.

Questions:

1. The parser should interface with the Sourcefile_Database package, associating line
numbers (and source files) with nodes.

2. How i. the parser structured with regard to withing of packages. Is it fairly stand-alone,
or are there lots of circular dependencies within the translator that need sorting out?

Pass 3 Design Document Ociober 22, 1991 5

3. The parser is currently a function. Do we want to change it so that it is a procedure
using Record_Parse_Result from the Parse_Control package?

3.2.3 Lexical Packages

The Lexical Packages will contain the lexical analysis. This is being reused from the
CMS-2 to Ada translator.

Questions:

1. Do we need to add calls to copy_file_handling in the lexical analysis in order to get the
copy file hierarchy?

Yes. Not needed for November demo.

3.2.4 Parse_Control Package

The Parse_Control Package contiins two subroutines: Parse_and_Extract and Record_-
Parse_Result. Parse_and_Extract calls the parser and then, using the resulting node, calls
the classification routines. It is called by main. Record_Parse_Result is called by the
parser. It stores the result of the parse into a variable which is local to the package so that
it is available for Parse_and_Extract.

We will make this package generic. (the three things to be specified at instantiation are the
names of the parser and parser initialization and the type of node).

(For the short term, we will also change the call to the parser so that it reflects the fact that
the cms parser is a function rather than a procedure.)

3.2.5 Classification Package
The Classification package will contain the following subroutines:

The procedure Process_A_Node takes as input a CMS_Node (N), and probably some
command-line flags. The logic is as follows:

if is_structural_node(N) then Process_structural _node(N, flags)

elsif is_option_node(N) then Process_option_node(N, flags)

elsif is_subprogram_decl(N) then Process_subprogram_decl(N, flags)
elsif is_data_decl(N) then Process_data_dccl(N, flags)

elsif is_executable_node(N) then Process_executable_node(N, flags)
else null

endif

The functions Is_Structural_Node, Is_Option_Node, Is Subprogram_Node, Is_Dat-
a_Decl, and Is_Executable all take as input a CMS_Node (N), and return true if N is of
the type specified in the function name, false otherwise. They will be implemented with
case statements, most likely.

Pass 3 Design Document October 22, 1991

The procedure Process_Seq_of Nodes takes as input a sequence of CMS nodes (S) and
probably some flags. The logic is as follows:

for each element x in S loop
Process_A_Node(x, flags)
end loop

The procedure Process_Expression takes as input a CMS_Node (N), and probably some
flags. The logic is as follows:

case kind(N) is
when binary_exp =>
Process_Expression(get_left(N), flags)
Process_Expression(get_right(N), flags)
when bit_call => Process_Expression(get_bit_count(N), flags)
{ ignore data_unit for now }
Process_Expression(get_starting_bit(N), flags)
when built_in_func =>
Process_Seq_of_Expressions(
get_input_parameters(N), flags)
when char_call => Process_Expression(get_char_count(N), flags)
{ ignore data_unit for now }
Process_Expression(get_starting char(N),flags)
when paren_exp =>
Process_Expression(get_right(N), flags)
when trailing_unary_exp =>
Process_Expression(get_left(N), flags)
when unary_exp =>
Process_Expression(get_right(N), flags)
when user_function_call =>
Process_User_Function_Call(N), flags)
when others => null
{ references and corad/fcorad_calls will be processed in full system)}
end case

The procedure Process_Seq_of_Expressions takes as input a Seq_of_CMS_Node (S),
and probably some flags. The logic is as follows:

For all x in S loop
Process_Expression(x, flags)
end loop

Questions:

1. Are we too tolerant in Process_A_Node; should we only have null for certain expected
types, like Empty and Undefined, and error on unexpected ones? Similarly for Proces-
s_Expression

Pass 3 Design Document October 22, 1991 7

3.2.6 Structure_Processing Package

The Structure_Processing package will contain all the subroutines which process the
nodes which are in the Structural category. They are as follows:

The procedure Process_Structural_Node takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

case kind(N) is

when auto_data_design => process_auto_data_design(N, flags);
when cms_system => process_cms_system(N, flags);
(similarly for all italicized members of the structural category)
when others => null;

end case;

The procedure Process_Auto_Data_Design takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now (mostly data). But what about
program declarations which can occur here?

The procedure Process_CMS_System takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

print a group_decl for get_name(N)
Process_Node (get_major_header_block(N))
Process_Seq_of_Nodes (get_system_element_list(N))

The procedure Process_Local Data_Design takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now (mostly data). But what about
program declarations which can occur here?

The procedure Process_Major_Header_Block takes as input a CMS_Node (N), and
probably some flags. The logic is as follows: Stubbed out for now (only options and data).

The procedure Process_Minor_Header_Block takes as input a CMS_Node (N), and
probably some flags. The logic is as follows: Stubbed out for now (only options and data).

The procedure Process_Program_Body takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

Process_Node(get_data_definition_list(N)) {for now, a no-op}
Process_Seq_of_Nodes(get_statement_list(N)) {should be all executables}
{ Do we need to set a flag in System_Info? (Looks like no) }

(This could be moved over to be part of the processing of the subprogram declarations if it
doesn’t really warrant a procedure all its own.)

The procedure Process_Subprogram_Data_Design takes as input a CMS_Node (N), and
probably some flags. The logic is as follows: Stubbed out for now (data only).

Pass 3 Design Document October 22, 1991 8

The procedure Process_System_Data_Block takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now (data only).

The procedure Process_System_Data_Design takes as input a CMS_Node (N), and prob-
ably some flags. The logic is as follows: Stubbed out for now (mostly data). But what
about program declarations which can occur here?

The procedure Process_System_Procedure_Block takes as input a CMS_Node (N), and
probably some flags. The logic is as follows:

Process_Node(Get_Minor_Header_Block(N), flags)

{ for now, ignore sys_proc_decl, which has name and type }
Process_Seq_of_Nodes(Get_Sys_Proc_List(Get_System_Procedure(N)),
flags)

{Do we need to set anything in Sys_Info? I don’t think so}

Questions:

1. Are there any structural statements which will require that we perform sets in the Sys-
tem_Info package?
For example, which ones trigger Start_Processing_Globals and Stop_Processing_Glo-
bals? (This can wait until November)

2. Auto-DD’s, Loc-DD’s and Sys_DD’s can contain local and external program declara-
tions (placeholders only). Exactly what do we do with these? (This can wait until
November)

3.2.7 Option_Processing Package

The Option_Processing package will contain all the subroutines which process the nodes
which are in the Options category. They are as follosws:

The procedure Process_Option_Node takes as input a CMS_Node(N), and probably
some flags. The logic is as follows:

case kind(N) is

for each italicized member x of option category in Appendix A

when x => Process_X(N, Flags),

when others => null;

end case;

The Process_X subroutines used in Process_Option_Node will also be in this package.
They will be added later.

Questions:

1. What are designs for low-level routines?

2. Which low-level routines need to be done for the November demo?

Pass 3 Design Document October 22, 1991 9

None. The whole routine will be stubbed out for the November demo.

3. Are there any option statements which will require that we perform sets in the System_-
Info package?

3.2.8 Subprogram_Processing package

The Subprogram_Processing package will contain all the subroutines which process the
nodes which are in tl.e Subprogram Declaration category. They are as follows:

The procedure Process_Subprogram_Decl takes as input a CMS_Node(N), and probably
some flags. The logic is as follows:

case kind(N) is

for each italicized member x of subprogram decl category in Appendix A
when x => Process_X(N, Flags);

when others => null;

end case;

The procedure Process_Executive_Procedure_Block takes as input a CMS_Node(N),
and probably some flags. The logic is as follows:

Print_External_Indicator(N)

{How to indicate executive status? Change middle file grammar? later}

Print(“procedure *, get_designator(get_decl(N))

Print_Source_Info(N)

Print_Formals(
get_input_parameter_list(get_decl(N)),
empty_list,
empty_list)

Process_Node(get_program_body(N), flags)

Print_Subprogram_Lists

Print_Line(“end”)

The procedure Process_External_Program_Declaration takes as input a CMS_N-
ode(N), and probably some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Function_Block takes as input a CMS_Node(N), and probably
some flags. The logic is as follows:

Print_External _Indicator(N)
Print(“function “, get_designator(get_decl(N))
Print_Source_Info(N)
Print_Type(get_return_type(get_decl(N))
Print_Formals(
get_input_parameter_list(get_decl(N)),
empty_list,
empty_list)
Process_Node(get_program_body(N), flags)

Pass 3 Design Document October 22, 1991 10

Print_Subprogram_Lists
Print_Line(“end”)

The procedure Process_Local_Program_Declaration takes as input a CMS_Node(N),
and probably some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Procedure_Block takes as input a CMS_Node(N), and probably
some flags. The logic is as follows:

Print_External _Indicator(N)

Print(“procedure “, get_designator(get_decl(N))

Print_Source_Info(N)

Print_Formals(
get_input_parameter_list(get_formal_io_parameters(get_decl(N))),
get_output_name_list(get_formal_io_parameters(get_decl(N)))),
get_abnormal_exit_list(get_decl(N)))

Process_Node(get_program_body(N), flags)

Print_Subprogram_Lists

Print_Line(“end™)

The procedure Print_External_Indicator takes as input a CMS_Node(N). The logic is as
follows:

if get_scope(N) = (what value?)

or else System_Info.is_processing_globals = TRUE
then Print(“external *)

end if

The procedure Print_Source_Info takes as input a CMS_Node(N). The logic is as fol-
lows:

Print(Sourcefile_DB.get_expanded_line(N))
Print(Sourcefile_DB.get_expanded_file(N))
Print(Sourcefile_DB.get_actual_line(N))
Print(Sourcefile_DB.get_actual_file(N))

The procedure Print_Formals takes as input 3 Seq_of_CMS_Node (In, Out, and Exit).
The logic is as follows:

if In or Out is nonempty then

print “formals (“

for all x in In loop
find name and print it (with preceding comma and return if nec.)
print (u iﬂ «)
find type and print it (or else “unknown™)

end loop

for all x in Out loop
find name and print it (with preceding comma and return if nec.)
print (“out *)
find type and print it (or else “unknown”)

Pass 3 Design Document October 22, 1991 11

end loop
print _line(*)")
end if
{ignore exits for now; requires a middle file change}

The procedure Print_Subprogram_Lists takes no parameters. The logic is as follows:

Print_Simple_List(“locals”, Scope_Determination.get_locals)
{ print contexts, if we have that information}
Print_Calls
Update_Reads_and_Writes
Print_Reads
Print_Writes
Print_Reads_and_Writes
{ no nested subroutines in CMS? }
{ no header or copy files for now }
{no pseudo code for now}
Reset_Subprogram_Lists

Questions:

1.

What exactly is the nature of this package’s interaction with the System_Info, Source-
file_Database and Subprogram_Lists packages?

Sourcefile_Database: get_actual_file, get_actual_line, get_expanded_file, get_expand-
ed_line

System_Info: if_processing_globals

Subprogram_Lists: add_to_reads/writes/calls, get_calls/reads/writes/reads_writes/con-
text, update_reads_and_writes, reset_subprogram_lists

. Is the Scoping package important to this package? (directly)

Yes, if we do scoping the way JRET does, where we keep lists of local scopes, and we
have routines analogous to Enter_ and Leave_Scope. Then the scoping package can
give us the list of locals. (Need push_locals, pop_locals, display_locals, is that it? Will
we keep nested and locals intertwined the way JRET does? I think perhaps we should
separate them out ...)

. Can subprograms nest? If so, what do we have to do to accomodate that?

As I'read the grammar, they cannot. However, in order to be able to extend easily to
other languages, we should make the Subprogram_Lists package able to handle it. See
that package for more ramblings.

4. For Print_External_Indicator, what values are we looking for in get_scope?

. For Print_Formals, how do I get the type of a parameter? From a Parameter statement,

to which I hope the id_ref will point? Is there a default setting for those parameters not
declared in a parameter statement?

. In Process_Executive_Procedure, do we want to indicate executive status in the middle

files? It will require a change in the grammar. (Decide after November)

Pass 3 Design Document October 22, 1991 12

7. Will we have any context statements? They should correspond to compools, but we
don’t have any nodes to represent them. (Joe is probably going to add them: even
though they are not essential to us, they are important to the translator.) Tackle after
November demo.

3.2.9 Data_Decl_Processing package

The data declaration names will be stored as name-+filename+line# in order to deal with
name collisions. These will be sorted out in pass4 to make the names readable. If neces-
sary, they will be stored as name+stub+0 until the sourcefile_db is wired in.

The Data_Decl_Processing package will contain all the subroutines which process the
nodes which are in the Data Declaration category. They are as follows:

The procedure Process_Data_Decl takes as input a CMS_Node(N), and probably some
flags. The logic is as follows:

case kind(N) is

Jor each italicized member x of data decl category in Appendix A
when x => Process_X(N, Flags);

when others => null;

end case;

The procedure Process_Cswitch takes as input a CMS_Node (N), and probably some
flags. The logic is as follows: Stubbed out for now.

The procedure Process_Double_Switch_Block takes as input a CMS_Node (N), and
probably some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Equals_Declaration takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows:

{ignore designator and scoping for now)
Process_Expression(get_tag_expression(N), flags)

The procedure Process_Field_Declaration takes as input a CMS_Node (N), and probably
sorr~ flags. The logic is as follows:

{ignore designator and scoping for now}

{ignore preset tag for now}
Process_Expression(get_repetition_count(get_initial_values(N)), flags)
Process_Expression(get_starting_bit(N), flags)

{ignore type for now}

Process_Expression(get_word_number(N), flags)

The procedure Process_Field_Overlay_Declaration takes as input a CMS_Node (N),
and probably some flags. The logic is as follows:

{ignore field_name for now)
For all x in get_sibling_list(N) loop

Pass 3 Design Document October 22, 1991 13

if kind(x) = expression
then Process_Expression(x, flags)
{ else ignore for now }
end if
end loop

The procedure Process_Format_Declaration takes as input a CMS_Node(N), and proba-
bly some flags. The logic is as follows:

{ignore designator, scoping and modifiers for now}

for each x in get_format_list(N) loop
Process_Format_Item(x, flags)

end loop;

The procedure Process_Format_Item takes as input a CMS_Node(N), and probably
some flags. The logic is as follows:

case kind(N) is
when repeated_format =>
Process_Expression(get_count(N), flags)
Process_Format_Item(
get_field_descriptor(N), flags)
for all x in get_format_list(N) loop
Process_Format_Item(x, flags)
end loop
when format_descriptor =>
Process_Expression(get_field_width(N), flags)
Process_Expression(get_fraction_size(N), flags)
when double_format_item =>
Process_Format_Item(
get_current_format_item(N), flags)
Process_Format_Item(
get_next_format_item(N), flags)
when format_positioner => {both x and t}
Process_Expression(get_count(N), flags)
when others => null
end case

The procedure Process_Index_Switch_Block takes as input a CMS_Node (N), and prob-
ably some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Item_Area_Declaration takes as input a CMS_Node (N), and
probably some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Item_Switch_Block takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Loadvrbl_Declaration as input a CMS_Node(N), and probably
some flags. The logic is as follows:

Pass 3 Design Document October 22, 1991 14

{ignore designator, scoping and type for now}
Process_Expression(get_initial_value(N), flags)

The procedure Process_Local_Index takes as input a CMS_Node (N), and probably some
flags. The logic is as follows: Stubbed out for now.

The procedure Process_Nitems_Declaration takes as input a CMS_Node(N), and proba-
bly some flags. The logic is as follows:

{ignore designator, scoping and type for now}
Process_Expression(get_initial_value(N), flags)

The procedure Process_Overlay_Declaration takes as input a CMS_Node (N), and prob-
ably some flags. The logic is as follows:

{ignore data_unit for now)
For all x in get_sibling_list(N) loop
if kind(x) = expression
then Process_Expression(x, flags)
{ else ignore for now }
end if
end loop

The procedure Process_Parameter_Declaration takes as input a CMS_Node(N), and
probably some flags. The logic is as follows:

{ignore designator, modifier, scoping and type for now}
case kind(get_initial_value(N)) is
when expression => Process_Expression(get_initial_value(N), flags)
when preset_tag_with_magnitude =>
Process_Expression(
get_preset_value(get_initial_value(N)), flags)
Process_Expression(
get_magnitude(get_initial_value(N)), flags)
Process_Expression(
get_bit_position(get_initial_value(N)), flags)
when others => null
end case

The procedure Process_Pdouble_Switch_Block takes as input a CMS_Node (N), and
probably some flags. The logic is as follows:

{ignore designators and modifiers for now}
Add_to_Calls(N)

The procedure Process_Pindex_Switch_Block takes as input a CMS_Node (N), and
probably some flags. The logic is as follows: stubbed out for now.

The procedure Process_Pitem_Switch_Block takes as input a CMS_Node (N), and prob-
ably some flags. The logic is as follows: stubbed out for now.

Pass 3 Design Document October 22, 1991 15

The procedure Process_Scaled_Data_Unit takes as input a CMS_Node(N), and probably
some flags. The logic is as follows: stubbed out for now.

The procedure Process_Simple_Type_Decl takes as input a CMS_Node(N), and probably
some flags. The logic is as follows: stubbed out for now.

The procedure Process_Structured_Type_Decl takes as input a CMS_Node(N), and
probably some flags. The logic is as follows:

{ignore designator and visibility for now}
Process_Expression(get_packing(N))
For all x in get_structure_information_list(N) loop
case kind(x) is
when field_declaration(x) =>
Process_Node(x, flags)
when field_overlay_declaration =>
Process_Node(x, flags)
when range_declaration => {ignore name for now}
Process_Expression(get_upper_limit(x), flags)
Process_Expression(get_lower_limit(x), flags)
end case
end loop

The procedure Process_Sub_Table_Declaration takes as input a CMS_Node(N), and
probably some flags. The logic is as follows:

{ignore designator, major index, modifier, and parent table for now}
if kind(get_number_of_items(N)) = expression
then Process_Expression(get_number_of_items(N), flags)
{ else ignore for now }
end if
Process_Expression(get_starting_item_number(N), flags)

The procedure Process_System_Index_Declaration takes as input a CMS_Node(N), and
probably some flags. The logic is as follows:

for all x in get_system_index_list(N) loop
{ignore designator for now}
Process_Expression(get_register_number(x), flags)
end loop

The procedure Process_Table_Block takes as input a CMS_Node(N), and probably some
flags. The logic is as follows:

{ ignore designator, indirect indicator, major index, modifier,
and table form for now}
Process_Expression(get_dimension_list(N), flags)
for all x in get_table_list(N) loop
case kind(x) is
when field_declaration(x) =>

Pass 3 Design Document October 22, 1991 16

Process_Node(x, flags)

when field_overlay_declaration(x) =>
Process_Node(x, flags)

when range_declaration => {ignore name for now)
Process_Expression(get_upper_limit(x), flags)
Process_Expression(get_lower_limit(x), flags)

when like_table_declaration => {ignore all else for now}
Process_Expression

(get_number_of_items(x), flags)

when item_area_declaration => {ignore for now}

when sub_table_declaration =>
Process_Node (x, flags)

end case
end loop

The procedure Process_Variable_Declaration takes as input a CMS_Node(N), and prob-
ably some flags. The logic is as follows:

{ignore designator, modifier, scoping and type for now}
case kind(get_initial_value(N)) is
when expression => Process_Expression(get_initial_value(N), flags)
when preset_tag_with_magnitude =>
Process_Expression(
get_preset_value(get_initial_value(N)), flags)
Process_Expression(
get_magnitude(get_initial_value(N)), flags)
Process_Expression(
get_bit_position(get_initial_value(N)), flags)
when others => null
end case

Questions:

1. What exactly is the nature of this package’s interaction with the System_Info, Source-
file_Database and Scoping packages?

System_Info: should be query-only.(if_processing_globals)

Sourcefile_Database: get_expanded_file_name, get_expanded_line_number, get_actu-
al_file_name, get_actual_line_number.

Scoping: tell about each declaration we come across so that it can enter it into the
appropriate scope, except for the outermost level. (add_to_locals, add_to_params, is
that it?)

2. Will we need Subprogram_List. Add_to_Reads for type declarations?
(Can be decided after November demo)

3. Should procedure switch blocks count as calls to procedures?
Currently, I am considering the call to occur in procedure call phrase instead.

Pass 3 Design Document October 22, 1991 17

3.2.10 Executable_Processing package

The Executable_Processing package will contain all the subroutines which process the
nodes which are in the Executable Statements category. They are as follosws:

The procedure Process_Executable_Statment takes as input a CMS_Node(N), and prob-
ably some flags. The logic is as follows:

case kind(N) is

for each italicized m=mber x of executable stmt category in Appendix A
when x => Process_X(N, Flags);

when others => null;

end case;

The procedure Process_Begin_Block takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

{ignore the labels}
Process_Seq_of_Nodes(get_statement_list(N), flags)

The procedure Process_Cswitch_Off takes as input a CMS_Node (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Cswitch_On takes as input a CMS_Node (N), and probably some
flags. The logic is as follows: Stubbed out for now.

The procedure Process_Data_Statement takes as input a CMS_Node (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Debug_Decl takes as input a CMS_Node (N), and probably some
flags. The logic is as follows: Stubbed out for now.

The procedure Process_Display_Phrase takes as input a CMS_Node (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure Process_End_Trace_Phrase takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Exec_Phrase takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

(ignore labels }
Process_Expression(Get_parameter_1(N), flags)
Process_Expression(Get_parameter_2(N), flags)

The procedure Process_Exit_Phrase takes as input a CMS_Node (N), and probably some
flags. The logic is as follows: Stubbed out for now.

The procedure Process_Find_Statement takes as input a CMS_Node (N), and probably
some flags.The logic is as follows:

Pass 3 Design Document Ociober 22, 1991 18

{ignore the if_data_clause}
Process_Node(get_else_clause(N),flags)
Process_Expression(get_find_condition(N), flags)
Process_Node(get_imperative_statement(N), flags)
Process_Expression(
get_increment(get_by_clause(get_control_clause(
get_varying_clause(N))))), flags)
Process_Expression(
get_limit(get_thru(get_control_clause(get_varying clause(N))))),
flags)
{ignore within part of control_clause for now}
Process_Expression(
get_initial_value(get_from_clause(get_control_clause(
get_varying_clause(N))), flags)
{ignore data_unit of varying_clause for now}

The procedure Process_For_Block takes as input a CMS_Node (N), and probably some
flags. The logic is as follows:

Process_Expression(get_expression(N), flags)
Process_Node(get_else_clause(N), flags)
{ignore labels and types fo. now}
for all x in get_value_block_list(N) loop
{ignore labels}
Process_Seq_of_Expressions (get_value_list(x), flags)
Process_Seq_of_Nodes(get_statement_list(x))
end loop

The procedure Process_Function_Return takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

Process_Expression(get_value(N), flags)

The procedure Process_If_Statement takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

Process_Expression(get_conditional_expression(N), flags)

Process_Node(get_else_clause(N), flags)

for all x in get_elsif_clause_list(N) loop
Process_Expression(get_conditional_expression(x), flags)
Process_Node(get_imperative_statement(x), flags)

end loop

Process_Node(get_imperative_statement(N), flags)

The procedure Process_Imperative_Statement takes as input a CMS_Node (N), and
probably some flags. The logic is as follows:

Process_Seq_of_Nodes(get_simple_statement_list(N), flags)

Pass 3 Design Document October 22, 1991 19

The procedure Process_Index_Goto_Phrase takes as inpat a CMS_Node (N), and proba-
bly some flags. The logic is as follows:

(ignore invalid and labels }
Process_Expression(get_selector(N), flags;
{ignore special condition}

{stub out switch name for now}

Tne procedure Process_Item_Goto_Phrase takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Pack_Phrase takes as input a CMS_Node (N), and probably
some flags. The logic is as fo:lows: Stubbed out for now.

The procedure Process_Pindex_Call_Phrase takes as input a CMS_Node (N), and prob-
ably some flags. The logic is as follows:

Process_Expression(get_control(N), flags)
if get_switch_name(N) is a pdouble_switch_block then
for all x in (get_pdouble_list(get_switch_name(N))) loop
Subprogram_Lists. Add_to_Calls(get_first_proc(x))
Subprogram_Lists.Add_to_Calls(get_seccnd_proc(x))
end loop
else {must be a pindex_switch_block}
for all x in (get_pindex_list(get_switch_name(N))) loop
Subprogram_Lists.Add_to_Calls(x)
end loop
end if
{ignore invalid, labels and parameters for now}

The procedure Process_Pitem_Call_Phrase takes as input a CMS_Node (M), and proba-
bly some flags. The logic is as follows:

{ ignore invalids, labels }

Process_Seq_of_Expressions(get_input(get_parameters(N)), flags)

for all x in (get_pitem_list(get_switch_name(N)) loop
Add_to_Calls(get_proc name(x))

end loop

The procedure Process_Procedure_Return takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Set_Phrase takes as input a CMS_Node (N), and probably some
flags. The logic is as follows:

Process_Expression(get_source(N), flags)

{ignore labels, overflow, remainder, and targets for now)

The procedure Process_Shift_Phrase takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

Pass 3 Design Document October 22, 1991 20

Process_Expression(get_shift_count(N), flags)
{ignore data_unit, direction, labels, shift_type, and target for now}

The procedure Process_Simple_Goto_Phrase takes as input a CMS_Node (N), and prob-
ably some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Snap_Phrase takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

Process_Expression(get_magnitude(get_preset_magnitude(N)), flags)
Process_Expression(get_bit_position(get_preset_magnitude(N)), flags)
{ignore data_unit and labels for now}

The procedure Process_Substitution_Decl takes as input a CMS_Node (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Supplied_Procedure_Call_Phrase takes as input a CMS_Node
(N), and probably some flags. The logic is as follows:

{ ignore labels and procedure name }
Process_Seq_Of_Expressions(get_input(get_parameters(N)), flags)
{ ignore ouput parameters for now }

The procedure Process_Swap_Phrase takes as input a CMS_Node (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure Process_Trace_Phrase takes as input a CMS_Node (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure Process_User_Function_Call takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows:

Subprogram_Lists.Add_To_Calls(get_function_name(N))
Process_Seq_Of_Expressions(get_input_parameters(N), flags)

The procedure Process_User_Procedure_Call_Phrase takes as input a CMS_Node (N),
and probably some flags. The logic is as follows:

Subprogram_Lists.add_to_calls(get_proc_name(N))
Process_Seq_Of_Expressions(get_input(get_parameters(N)), flags)
{ ignore labels, exit parameters, and ouput parameters for now }

The procedure Process_Expression takes as input a CMS_Node (N), and probably some
nags. The logic is as follows:

case kind(N) is
when binary_exp =>
Process_Expression(get_left(N), flags)
Process_Expression(get_right(N), flags)
when bit_call => Process_Expression(get_bit_count(N), flags)
(ignore data_unit for now }

Pass 3 Design Document Ociober 22, 1991 21

Process_Expression(get_starting_bit(N), flags)
when built_in_func =>
Process_Seq_of_Expressions(
get_input_parameters(N), flags)
when char_call => Process_Expression(get_char_count(N), flags)
{ ignore data_unit for now }
Process_Expression(get_starting_char(N),flags)
when paren_exp =>
Process_Expression(get_right(N), flags)
when trailing_unary_exp =>
Process_Expression(get_left(N), flags)
when unary_exp =>
Process_Expression(get_right(N), flags)
when user_function_call =>
Process_User_Function_Call(N), flags)
when others => null
{ references and corad/fcorad_calls will be processed in full system)
end case

Questions:

1. What exactly is the nature of this package’s interaction with the System_Info, Scoping
and Subprogram_Lists packages?

System_Info: Query-only
Scoping: is_global
Subprogram_Lists: add_to_reads; add_to_writes; add_to_calls

3.2.11 Print_Middle_File package

The Print_Middle_File package will contain utility routines to assist the Process_* pack-
ages in their printing. We had considered a template approach in which all the printing was
controlled in this package, using data from the other packages, but that quickly got very
cumbersome, and didn’t seem to have much benefit in this case. Instead we will have
“helper” routines which know the format for certain types of items (expanded vs unex-
panded variable names, for instance) and different types of lists. We will feel free to add
new ones as needed. We intend this to be a generic package, but will adjust that intention
as required.

The procedure Print_Simple_List takes as input a string (Label) and a Seq_of_Symbols
(S). The logic is as follows:

if S is non-empty then
Print(Label, “(*)
for each x in S loop
Print (x) {with preceding comma, if necessary}

Pass 3 Design Document October 22, 1991 2

end loop
Print_line(“)”)
end if

Questions:
1. What procedures are needed?
Print_Expanded_Identifier (esp. for variables)
¢ Print_Unexpanded_Identifier (esp. for subroutines)
e Print_List_of_Expanded_Identifiers
¢ Print_List_of Unexpanded_Identifiers

3.2.12 Sourcefile_Database package

The Sourcefile_Database package will keep track of which source files are currently being
processed, and will calculate expanded files and line numbers for us. We will reuse as
much as possible from JRET.

Questions:

1. What subroutines are in this package?

* set_top_level_source_file_name

o get_top_level_source_file_name

e get_top_level_source_file_symbol

o get_top_level_file_basename

¢ hold_source_info (parser will use)

e attach_source_info (parser will use)

» get_expanded_file_name (Data_Decl_Processing and Subprogram_Processing)

» get_expanded_line_number (Data_Decl_Processing and Subprogram_Processing)
» get_actual_file_name (Data_Decl_Processing and Subprogram_Processing)
 get_actual_line_number (Data_Decl_Processing and Subprogram_Processing)

2. Are there any alterations we need to make to this package?

Want to make it generic. Passing in Node type, EQ function, and possibly Default node
value. Also, want to change it so it uses the generic hashing routines.

3.2.13 Scoping package

The Scope_Determination package will keep track of which data items are global and
which are local. We will reuse as much as possible from JRET (Most comes from
extract_info). I had originally intended the Scope_Determination package to contain all

Pass 3 Design Document October 22, 1991 n

]

the language-dependent scoping rules, but JRET seems to allow the data-declaration rou-
tines to take care of that, and Scope_Determination just keeps track of those decisions.
This is reasonable, and will allow Scope_Determination to be more language-independent
(in fact it should be fully language-independent, except for the type of nodes, that’s why
we’ll make it generic).

We still probably want to have a separate procedure (here or elsewhere), which, given a
declaration (and maybe the System_Info package), determines whether it is local or glo-
bal. (The idea is to keep these rules as contained as possible.)
Questions:
1. What subroutines are in this package?

Probably want the following:

e push_locals, pop_locals(renamed?) (Subprogram_Processing)

» locals_display (Subprogram_Processing)

e add_to_locals (Data_Decl_Processing)

e add_to_params (Data_Decl_Processing)

¢ is_global (Executable_Processing)

¢ is_local (unused for now?)

e HASH (will be passed in as a function to the generic)

¢ params_node, params_seq, locals_node, locals_seq (Data_Decl_Processing?)

2. What structural statements’ data declarations are by definition global (SYS-DD, COM-
POOL?Y, ...)

3. Do we need to change this package?
Want to make it generic

4. What other packages will this package need to communicate with?
Subprogram_Processing, Data_Decl_Processing, Executable_Processing

5. Is there a better name for this package?

3.2.14 Subprogram_Lists package

The Subprogram_Lists package will serve to aid communication between the Subpro-
gram_Processing and Executable_Processing packages. It will maintain the read, write,
read/write, formals and calls lists. We will reuse as much as possible from JRET. We will
use the Seq package (part of ADL) to build our lists.

The Calls_List, Reads_List, Writes_List,Reads_Writes_List are each a linked list of
declaration nodes. We shall provide the following visible routines:

The procedure Add_to_Calls takes as input a CMS_node (N). It gets the
name (a symbol) and adds it to Calls_List.

Pass 3 Design Document October 22, 1991 %

The procedure Add_to_Reads takes as input a CMS_node (N). It gets the
name (a symbol) and adds it to Reads_List.

The procedure Add_to_Writes takes as input a CMS_node (N). It gets the
name (a symbol) and adds it to Writes_List.

The function Print_Calls takes no input and returns no output. It prints out
the Cails_List, if one exists. (It must handle switch blocks as well as “reg-
ular” procedure and function calls.)

The function Print_Reads takes no input and returns no output. It prints
out the Reads_ List, if one exists.

The function Print_Reads_and_Writes takes no input and returns no out-
put. It prints out the Reads Wntes List, if one exists.

The function Print_Writes takes no input and retums no output. It prints
out the Writes_List, if one exists.

The procedure Update_Reads_and_Writes takes no input and returns
nothing. It looks for symbols which appear on both the Reads_List and the
Writes_List, and removes them to the Reads_Writes_List.

Questions:

1. Which lists do we need to keep track of?
Locals will be taken care of by the Scope_Determination package.
Formals will be taken care of in Subprogram_Processing
Reads, writes, reads_writes, and calls will be taken care of here
What about Macros, and Contexts? Ignored for now.

2. How do we handle nested subprograms? Should they be tightly bound to locals (as in
JRET) or done separately?
I think CMS2 doesn’t have nested subprograms. However, I think we need to handle
this issue anyway (at least from a design standpoint; we could implement only the sim-
ple case, leaving an easy way to extend it.)
I think that lists that we keep could be kept in hash tables, where the key would be the
subprogram_decl and the value would be the read list (depending on which hash table
was queried). The nested subprogram list(s) could be kept in this package along with
the others that we’re already keeping.
Alternatively, we could just use stacks, pushing and popping as we start and end the
subprograms.

3. What other packages will this package need to communicate with?
* Executable_Processing: add_to_reads, add_to_writes, add_to_calls

Pass 3 Design Document October 22, 1991 25

¢ Subprogram_Processing: update_reads_and_writes, reset_subprogram_lists, print_-
reads, print_writes, print_reads_and_writes, print_calls

¢ Print_Middle_File: we’ll want to use those utilities.
4. See Declaration_Processing for discussion of how we will store names...
May not be pertinent to this package, as the printing utilities should hide it...

3.2.15 System_Info package

The System_Info package will serve to aid communication between the Options_ and
Structure Processing packages on the one hand and the Subprogram_, Data_ and Execut-
able_Processing packages on the other. It will maintain information about the state of the
system which will affect the interpretation of other nodes.

Questions:

1. Exactly which information needs to be maintained here?

* Globals processing - ie are we in a segment of code where all declarations are by
default external? (Start_Processing_Globals, Stop_Processing_Globals, If_Processing
Globals)

¢ More as needed
2. What packages will this package need to communicate with?

» Data_Processing, Executable_Processing, Subprogram_Processing: If_processing_glo-
bals

e Structure_Processing: Start_Processing_Globals, Stop_Processing_Globals

3. If the only thing to be in here is is_processing_globals, perhaps that should go into Sco-
pe_Determination, and this package should be eliminated?

To be decided after November demo.

3.2.16 CMS_Records package

The CMS_records package defines the ADL structure which will serve as the underpin-
ning of our system. We will reuse it from the CMS-2 to Ada translator.

Questions:
1. Are there any changes needed?
3.2.17 CMS_Interface package

The CMS_interface package allows us to access the ADL structure which serves as the
underpinning of our system. We will reuse it from the CMS-2 to Ada translator.

Questions:

Pass 3 Design Document October 22, 1991 26

1. Are any changes necessary?
Yes. New_CMS_Node needs to initialize the fields to the Empty_Node where they are
currently being left as the null pointer.

3.2.18 Symbol Table packages
We will reuse the CMS-2 to Ada translator’s symbol tables and searches.

Questions:
1. Are any changes necessary?

Pass 3 Design Document October 22, 1991 n

Appendix A: Node Categories

Structural Options Subprogram Data Executable Substatement
Declarations Declarations Statements Clauses
aulo_data_design cmode_decl exec_proc_block cswitch begin_block elsif_clanse
cms_system address_counter_separa- ¢xtermal_program_decl double_switch_block crwitch_off octual_parameters
direct_code_block tion_decl Junction_block equols_declaration cswilch_on binary_exp
local_data_design allocataion_information facqf program_decl field_declaration data_statement bir_call
major_header_block cmp_object_spec procedure_block field_overiay_decl debug_decl boolean_type
minor_header_block env_object_spec Jormat_declaration display phrase build_in_func
program_body crg_object_spec index_switch_block end_trace_phrase by_clanse
subprogram_data_design crl_object_spec inputlist_ded exec_phrase character_type
system_data_block cr_object_spec io_phrase exit_phrase char_call
system_data_design sadump_object_spec iem_area_decl Jind_statement corad_call
system_procedure_block 33_object_spec dem_switch_block Jor_block component_ref
scrg_object_spec loadvrbl_decl Junction_return control_clause
scrl_object_spec local_index if_siatement direct_ref
scr_object_spec nitems_dsclaration imperative_state- double_swiich_item
sm_object_spec nonstandard_fille_ded ™™ double_format_item
coll_option outputlist_dec] index_goto phrase oy vwitch
cawitch_delete_decl overlay declaration ~ UEMSOOPNESE Ly o ichs
executive_declaration parameter_decl oull_phrase exec_proc_decl
farmode_option pdouble_switch_block Packphrase Jeorad_call
hex_option pindex_switch_block pindex_call phrase Nle_specification
independent_option pitem_switch_block ~ Pilem-call phrase o,
level_option scaled_data unit resume_phrase float_type
line_option simple_type_decl procedurs_renarn Jormal_io_parameters
mode_field_declaration stringform_decl sel_phrase format_descriptor
mode_vrbl_declaration structured_type_deci “Mfi-phrase format_list
monitor_option sub_table_dect simple_goto phrase o cisuse
mscale_option standard_file_ded snap_phrase Junction_decl
nonnt_option system_index_decd ~ OP-phrase indexed_ref
object_option table_bock substitution_decl index_clanse
optimize_opticn variable_decl 'za"_";:::‘““"' integer_type
options_deciaration swap_phrase item_swilch_item
parameter_passing decl vrace_phrase like_table_option
pooling_declaration wser function_cal '0cal_dala_decl
mle_mode._dechntion user_procedure_call major_header
source_option _phrase minor_header
single_precision_decl named_ref
structured_option paren_sxp
(For Nov, sir's pdouble
only) pitem
. preset_liem
(To be reveiwed) proset_magnitnde
preset_with_magnitude
procedure_declaretion
range._ doclarati
repeaied_format
Pass 3 Design Document October 22, 1991 2

Substatement
Clauses (ctd)
repeated_stringform
spill_declaration
star_data_unit
status

slatus_type
suringform_descriptor
sringform_list
suringform_positioner
subprogram_data_definition_list
sys_proc_declaration
system_index
system_procedure
thru_clause
trailing_unary_exp
1_format_positioner
two_word _initializer
unary_exp
unit_with_magnitude
value_block
vary_block
within_clanse
x_format_descriptor

(For November, only s/r’s checked)

In the above table, italics indicate items which are to be processed in the full system, and
bold italics indicates items to be processed in the November demo system.

Pass 3 Design Document October 22, 1991 2

